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Abstract

The construction of the standard cubic equa-
tions of state such as Peng-Robinson or Soave-
Redlich-Kwong does not automatically yield
physically reasonable values when the equa-
tion of state is extrapolated beyond the range
where experimental data are available. A multi-
property fitting exercise was carried out in
which we obtained a consistent set of Twu α
function parameters for 2570 pure fluids based
on the experimental data contained in the Ther-
moDataEngine (TDE) database developed at
NIST. We have applied the consistency checks
of Le Guennec et al. to the Twu α func-
tion of the Peng-Robinson equation of state.
The experimental data stored in TDE passed
through a critical evaluation, and we used only
the data that were determined to be thermo-
dynamically reliable. Over all the considered
fluids, the mean average percentage error is ap-
proximately 7% for vapor pressure, 1% for la-
tent heat of vaporization, and 1% for saturation
specific heat. Comprehensive supplemental ma-

†Commercial equipment, instruments, or materials
are identified only in order to adequately specify cer-
tain procedures. In no case does such identification im-
ply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it im-
ply that the products identified are necessarily the best
available for the purpose. Contribution of the National
Institute of Standards and Technology, not subject to
copyright in the US

terials with the complete set of analytic deriva-
tives, the obtained parameters, and the fitting
code in C++, is provided.

1 Introduction

Cubic equations of state (EOS) have a pedigree
dating back to the work of van der Waals in
1873.1 In spite of their well-documented defi-
ciencies described by for instance Trebble and
Bishnoi2 or Boshkova and Deiters,3 cubic EOS
retain a prominent place in chemical engineer-
ing (and many other fields) thanks to their
simplicity. Though much more accurate mul-
tiparameter fundamental equations of state are
available in thermophysical property libraries,
cubic equations of state show no signs of falling
into disuse.

One of the well-documented challenges with
cubic equations of state is their relatively poor
predictions of thermodynamic properties (e.g.,
the vapor pressures of polar fluids like wa-
ter) when generalized estimation schemes are
employed for the attractive parameters in the
equation of state, such as in the conventional
Peng-Robinson equation of state.4,5 When the
attractive parameters are fit to experimental
data, as in this work, the equation of state
can yield much better predictions of thermo-
dynamic properties. Figure 1 gives a graph-
ical representation of the problem. This fig-
ure shows that at low reduced temperatures,
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the errors in vapor pressure prediction from the
conventional Peng-Robinson equation are more
than 20% as compared to the reference equa-
tion of state of Wagner and Pruß6! The com-
mon “solution” to this problem is to introduce
empiricism, or adjustable parameters that must
be fit by the correlator.
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Figure 1: Error in the prediction of the va-
por pressure of water from the default Peng-
Robinson α function with the α function from
this work. The subscript “ref” refers to the
reference multiparameter equation of state of
Wagner and Pruß6

In the literature there have been a few groups
that have published large libraries of these ad-
justable parameters for cubic equations of state.
The most significant recent contributions have
been those of Horstmann et al.7 and Le Guen-
nec et al.8 In particular the work of Le Guennec
et al. is important here because their library of
adjustable parameters were obtained according
to a set of rigorous consistency checks, the same
checks applied here.

While the overall aim of this work is similar
to that of Le Guennec et al., we made some
improvements to the fitting procedure:

• More comprehensive set of pure fluids : In
Le Guennec et al., the DIPPR database
was used to generate pseudo-experimental
data points for 1197 pure fluids for which
vapor pressure, latent heat, or satura-
tion specific heat data were available. In
this work we used the ThermoDataEngine

(TDE) database of NIST, which provides
data coverage for more than 23,000 pure
fluids (though the data coverage is very
heterogeneous; see below). Of those flu-
ids, 2570 were included in our fit because
they had sufficient experimental data cov-
erage.

• Direct fitting of experimental data:
Rather than fitting curve fitted pseudo-
experimental data as in Le Guennec et
al., we have directly employed the exper-
imental data of NIST TDE in our fitter.

• Algorithm: We provide comprehensive
description of the fitting process and pro-
vide the source code used in our fit-
ter. All parts of the fitting process use
open-source tools and packages for cross-
platform replicability.

2 Thermodynamic model-

ing

2.1 Cubic equations of state

The development of new cubic equations of
state remains an active field of research,9 as well
as the extension of cubic equations of state with
activity coefficient models.7,10–14 One of the pri-
mary motivations for this work is to serve as a
reference for the properties of the pure fluids in
cubic + activity coefficient models such as those
of the group-contribution volume-translated
Peng-Robinson (VTPR)12,15–19 equation or pre-
dictive Soave-Redlich-Kwong (PSRK).7 More-
over, as demonstrated by Le Guennec et al.,20

it is absolutely imperative to use a consistent α
function when fitting only subcritical data and
applying the model to supercritical states.

While a comprehensive analysis of the multi-
tude of equations of state that are either direct
descendants (or distant offspring) of the van
der Waals equation of state is beyond the scope
of this paper, we refer the interested reader to
the literature for a further review.9,21,22 In this
study we focus on one of the cubic equations
of state with the most significant present-day
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influence – the Peng-Robinson4,5 equation of
state.

The most industrially relevant cubic equa-
tions of state can be given in the form23

p =
RT

v − b
− a(T )

(v + ∆1b)(v + ∆2b)
(1)

where ∆1 and ∆2 are constants that are set to
yield the desired equation of state (see Bell and
Jäger24 or Michelsen23 for more information).
In the case of Peng-Robinson, ∆1 = 1+

√
2 and

∆2 = 1−
√

2, and in the case of Soave-Redlich-
Kwong, ∆1 = 1 and ∆2 = 0. In addition, b is
the co-volume, a is the attractive term, and v
is the molar volume.

In the standard implementations of a cubic
EOS, the attractive term a generally takes the
form

a = a0α(Tr), (2)

where a0 is an constant of the form a0 =
c0R

2T 2
c /pc, and where c0 is EOS-dependent.

In the Peng-Robinson or Soave-Redlich-Kwong
EOS the α function is given by the form

α =
[
1 +m

(
1−

√
T/Tc

)]2
(3)

as proposed by Soave and co-workers.25 The pa-
rameter m is a function of the acentric factor
of the fluid. The attractive term of Mathias &
Copeman26 is an extension of this general form.
An alternative (and now preferred) form for the
attractive function is that of Twu:27

α =

(
T

Tc

)C2(C1−1)

exp

[
C0

(
1−

(
T

Tc

)C1C2
)]

.

(4)
This form is now preferred28 because the pa-
rameters C0, C1, and C2 can be selected to meet
some important consistency conditions that are
difficult or impossible to enforce with other
functional forms. These conditions are further
described in Section 4.4.

A number of authors have attempted to de-
velop generalized approaches for the attractive
parameters for cubic EOS, with varying levels
of success.29 There have also been attempts to
determine physical constraints on the terms in

the cubic equation of state.8,20,28,30,31

2.2 Helmholtz transformations

In the state-of-the-art thermophysical property
libraries, the equation of state is expressed in
terms of non-dimensionalized Helmholtz energy
αe = ae/(RT ) rather than in a pressure-explicit
form. The Helmholtz energy ae is a thermody-
namic potential from which all other thermo-
dynamic properties can be obtained. Therefore
the EOS can be expressed as

αe(τ, δ) = α0
e(τ, δ) + αr

e(τ, δ), (5)

where τ = Tr/T and δ = ρ/ρr are the reciprocal
reduced temperature and the reduced density,
respectively. The reducing temperature Tr and
the reducing density ρr are usually, but not al-
ways, their values at the critical point.

The generalized non-dimensionalized residual
Helmholtz energy contribution αr

e can be given
by24

αr
e = − ln(1− bδρr)−

τa

RTr

ln

(
∆1bρrδ + 1

∆2bρrδ + 1

)
b(∆1 −∆2)

.

(6)
As in Bell and Jäger,24 Eq. (6) can be factored
into the form

αr
e = ψ(−)(δ)− τa(τ)

RTr
ψ(+)(δ). (7)

The ideal-gas contribution α0
e of the equation

of state (see for instance Lemmon et al.32) is
given by

α0
e =

h00τ

RTc
−s

0
0

R
−1+ln

δτ0
δ0τ
− τ
R

∫ τ

τ0

c0p
τ 2

dτ+
1

R

∫ τ

τ0

c0p
τ

dτ

(8)
where δ0 = ρ0/ρc, τ0 = Tc/T0, and c0p is the
ideal-gas specific heat capacity as a function
of temperature (or reciprocal reduced temper-
ature τ). The subscript “0” indicates that the
property is for the reference state of the EOS.
The ideal-gas contribution can also be written
in the form α0

e = ln δ + f(T ) to highlight the
separability of the temperature and density de-
pendence of α0

e .
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3 Data curation and prepa-

ration

In this work we used the experimental data
contained in the ThermoData Engine database
(TDE).33–36 This database contains a large
body of experimental data (for nearly 24,000
pure fluids), and includes methods for critically
evaluating the uncertainty and thermodynamic
consistency of experimental data. We include
in this study only experimental data that pass
the critical evaluation checks of TDE.

The data were prepared by selecting all the
pure fluids for which, at a minimum:

• Critical temperature data were available
• Saturation pressure data were available

with at least 10 data points passing the
critical evaluation tests; saturation pres-
sures below pc/106 or saturation temper-
atures above 0.8Tc were not included1.

For some fluids, additional useful data were
available in TDE, including critical pressure
data, latent heat of vaporization data, triple-
point temperature data, etc. For many fluids
there is a significant paucity of experimental
data; for some fluids, there are as few as one
data point among all data types.

While the critical temperature is usually mea-
sured directly, the “experimentally measured”
critical pressure given in literature is often eval-
uated by extrapolating the saturation pres-
sure data to the measured critical temperature,
for instance by fitting an Antoine-type equa-
tion to the saturation pressure versus tempera-
ture data and extrapolating to the given criti-
cal temperature to obtain the critical pressure.
The critical pressure value calculated by TDE
is used without modification.

The acentric factor ω appearing in the base-
line equation of state forms for the Peng-
Robinson and SRK equations is never mea-
sured directly, rather it is obtained as a post-

1These points were rejected due to the numerical dif-
ficulties of carrying out vapor-liquid-equilibrium calcu-
lations at these states; derived vapor pressures for heavy
linear alkanes are available at pressures below 10−20

Pa37

processing step applied to the experimental
data. The definition of the acentric factor is21

ω = − log10

(
pσ(0.7Tc)

pc

)
− 1. (9)

Determination of the acentric factor from ex-
perimental data is a multi-step process:

1. Determine the critical temperature and
pressure as described above.

2. Obtain a saturation pressure curve (from
a functional form such as the Antoine
equation) for the saturation pressure
data, with the functional dependency
pσ = f(T ).

3. Evaluate the saturation pressure curve at
0.7Tc, and evaluate the acentric factor
from Eq. (9).

Figure 2 shows the data distribution for the
pure fluids included in TDE that were used in
this study. There are comparatively few fluids
that have both a significant number of vapor
pressure measurements and well as latent heat
measurements. The bulk of the fluids are found
in the domain with only a few vapor pressure
measurements, and for many of those fluids, few
(or no) latent heat measurements.

The metadata associated with each fluid is
based on the InChI key of the fluid, a unique
identifier based on the molecular connectivity
information2. The InChI key is broadly under-
stood by cheminformatics systems, and is unen-
cumbered by intellectual property restrictions.
CAS registry numbers, on the other hand, are
proprietary information.

4 Algorithmic approach

4.1 Objective function

The objective function for this problem is the
sum of the squared residues in the residue vec-
tor. Mathematically, our objective function is

2Though useful for generating unique identifiers for
nearly all compounds based on molecular connectivity
information, the InChI string/key is not able to dis-
ambiguate spin isomers like ortho-, para-, or normal-
hydrogen.
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Figure 2: Distributions of the experimental
data available for each data type for pure fluids
in the NIST ThermoDataEngine. Npσ : num-
ber of fluids with this many experimental va-
por pressure data points, NL: number of fluids
with this many latent heat of vaporization data
points, Ncσ : number of fluids with this many ex-
perimental saturation specific heat data points.

given by:

O(~C) =
∑
i

(wiri(~C))2 (10)

where each of the residue contributions ri =
ymodel,i−yexp,i corresponds to a given data point
(saturation pressure, latent heat, or saturation
specific heat), as is described in the following
sections, and as described in detail in the sup-
plemental material. The parameters wi weight
the different property types, where a weight of
one is used for the vapor pressure and latent
heat of vaporization data, and a weight of 0.5
is used for the saturation specific heat data.
These weights were obtained by experimenta-
tion to enforce the desired balance between the
different properties. Within the properties, nor-
malized weights as specified by the Thermody-
namics Research Center were used to weight the
data points.

The evaluation of the residues is an embarass-
ingly parallel problem; each row in the residue
vector can be evaluated entirely independently
of the other rows. This creates a problem that is
perfectly suited to parallel evaluation over sev-
eral threads. In this case, we use the natively
multithreaded C++11 library NISTfit38 devel-
oped by the authors to evaluate the residues in
parallel, yielding a nearly linear speedup versus
purely serial evaluation. The NISTfit library
also includes a thread-parallel implementation
of the Levenberg-Marquardt sum of squares
minimizer governed by a derivative-based trust
region minimization. At the beginning of the
fitting campaign, the Levenberg-Marquardt op-
timizer was used, and for that reason, analytic
derivatives of each of the residues with respect
to the coefficients were developed. These an-
alytic derivatives are mathematically complex,
and for that reason are presented in the sup-
plemental material, where they are covered in
detail.

One of the major disadvantages of Levenberg-
Marquardt minimization is that there is no easy
means of integrating nonlinear inequality con-
straints such as the consistency checks imple-
mented in this paper. One of the most straight-
forward means of implementing inequality con-
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straints in fitting is to use a nature-inspired
evolutionary optimization technique in concert
with penalty functions for the inequality con-
straints. There are numerous evolutionary-like
optimization methods available in the litera-
ture, and the differential evolution39 algorithm
as implemented in the Python scipy.optimize

package was used. Differential evolution oper-
ates by generating a large population of indi-
viduals (an individual is a set of Twu coeffi-
cients), and, for each individual, evaluating the
cost function. Varying hybridization schemes
are described in the literature for finding the
lowest cost individual (best set of Twu coeffi-
cients).

The cost function for differential evolution is
then given by

COST(~C) = O(~C) + PENALTY(~C) (11)

where PENALTY(~C) is the sum of the penal-
ties for each constraint that is not satisfied.
Each unfulfilled constraint added a large num-
ber (here, 1000) to the cost function. The dif-
ferential evolution optimizer was then able to
successfully carry out the global optimization
problem within the domain specified by the con-
straints. Solutions not meeting the constraints
were implicitly rejected by the optimizer. Dif-
ferential evolution is a non-derivative-based op-
timization method and is therefore able to han-
dle the discontinuities in the objective function
caused by the constraints.

4.2 Constraints

As is described in Le Guennec et al.,8,28 there
are constraints on the Twu attractive parame-
ters ~C that should be enforced in order to en-
sure reasonable outputs and extrapolation be-
havior from the equation of state. These con-
straints are that:

• α should be 1 at Tr = 1 .

• α should always be greater than zero.

• The derivative dα/dTr should always be
less than or equal to zero.

• The derivative d2α/dT2
r should always be

greater than or equal to zero.

• The derivative d3α/dT3
r should always be

less than or equal to zero.

Many authors that have developed sets of
Twu attractive parameters have not enforced
these constraints, yielding highly suspect ex-
trapolation behavior outside the domain in
which the parameters were fit.

Le Guennec et al.28 gives the following two
constraints, both of which MUST be enforced:
Constraint 1:

−∆ ≥ 0 (12)

Constraint 2:

C0γ ≥ 0 (13)

where ∆ = C2(C1 − 1) and γ = C1C2.
In this case we express each constraint as the

expression being greater than or equal to zero
- this is the general form of the constraints re-
quired in many optimization routines. In each
constraint, the left hand side is only a function
of the attractive parameters ~C.

There are furthermore two constraints (3a
and 3b), at least one of which must be sat-
isfied to ensure consistency.
Constraint 3a:

1−∆− γ ≥ 0 (14)

Constraint 3b (both conditions must be
met):{

1− 2∆ + 2
√

∆(∆− 1)− γ ≥ 0
4Y 3 + 4ZX3 + 27Z2 − 18XY Z −X2Y 2 ≥ 0

(15)
where

X = −3(γ + δ − 1) (16)

Y = γ2 + 3δγ − 3γ + 3δ2 − 6δ + 2 (17)

Z = −δ(δ2 − 3δ + 2) (18)

A consistent set of Twu parameters is therefore
one that satisfies constraints 1 and 2 and at
least one of constraints 3a and 3b.
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4.3 Residues

The residues used in this work are of three fun-
damental types:

1. Saturation pressure: Equality of the ex-
perimental saturation pressure with the
model prediction is thermodynamically
equivalent to the model-predicted Gibbs
energy being the same in both phases for
the experimental pressure. Therefore, the
difference in Gibbs energy between the
liquid and vapor phases, each evaluated at
the experimental temperature and pres-
sure, is driven to zero.

2. Latent heat of vaporization: The dif-
ference in latent heat of vaporization
with the experimentally-measured value
is driven to zero.

3. Saturation specific heat : The saturation
specific heat can be experimentally mea-
sured at states where the measurement of
the vapor pressure is difficult or impossi-
ble. Therefore, saturation specific heat
data can provide useful information on
the shape of the thermodynamic surface.
As noted by Le Guennec et al.,20 the in-
clusion of cσ data is imperative to more
fully constrain the behavior of the equa-
tion of state. One disadvantage of the use
of saturation specific heat data is that a
model for the ideal-gas specific heat of the
fluid must be available. In this case, we
used the fitted values for c0p provided by
the Wilhoit correlation coefficients avail-
able in TDE.

The residues are added together as described
in Eq. (10). The analytic form of each residue is
presented in the supplemental material, along
with additional derivations required to imple-
ment each of the residue terms.

4.4 Implementation

For a given fluid, the following approach is em-
ployed:

1. The experimental data for a given fluid is
retrieved from cached data obtained from
NIST ThermoDataEngine.

2. If sufficient data are not available, the
fluid is not included.

3. If sufficient data are available, the acen-
tric factor is obtained by fitting an An-
toine curve to the saturated pressure data
over the entire temperature range, and
is then evaluated according to Eq. (9).
These values are only used to provide
guess values for the saturation calls; thus,
extremely precise acentric factors are not
required.

4. Differential evolution is used to carry out
the optimization in two parts:

(a) Constraints 1, 2, and 3a are imposed,
and the optimization is carried out.
If the optimization terminates suc-
cessfully, the result is stored.

(b) Constraints 1, 2, and both parts of
3b are imposed, and the optimiza-
tion is carried out. If the optimiza-
tion terminates successfully, the re-
sult is stored.

5. The best individual from the optimization
is retained. The output of this step is
the final optimized value of the consistent
Twu vector of coefficients ~C.

The final minimization algorithm was imple-
mented by hybridizing a number of open-source
tools. The implementation of the generalized
Helmholtz energy transformations of the cu-
bic equations of state of Bell and Jäger24 were
used to evaluate the Helmholtz energy contri-
butions found in the residues and the Jacobian
matrix. Data input and output uses the stan-
dardized JSON (javascript object notation) file
format for native interoperability between C++
and Python (or other high-level languages). In
C++, the rapidjson library is used for JSON
file input/output, and the Eigen library is used
for the matrix math operations. Some com-
putational routines (e.g., generic C++ routines
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for nonlinear equation solving) have been taken
from the CoolProp library.40

The C++ interface was wrapped into a
module in the Python programming language
through the use of the pybind1141 package.
The Python module retains the convenience of
a high-level programming language while also
achieving computational speeds commensurate
with a low-level programming language (C++
in this case). The amount of shim code to con-
struct the interface between C++ and Python
is minimal; the pybind11 templates carry out
most of the datatype conversions.

The source code used to carry out the mini-
mization is given in the supplemental material,
as well as some artificial “experimental” data
generated from the multiparameter equation of
state of n-hexane42 for testing purposes.

5 Results

We applied the fitting methodology described
above to fit a consistent set of Twu attractive
parameters for 2570 fluids and obtained the pa-
rameters given in the supplemental material.
For each property, we define the average ab-
solute deviation (AAD) as a percentage given
as

AADY =
100

N

N∑
i=1

∣∣∣∣1− Ycalc,i
Yexp,i

∣∣∣∣ (19)

where Y is the property of interest (vapor pres-
sure, latent heat, or saturation specific heat).
If a calculated value is unable to be evaluated
by the model (most especially at extremely low
pressures), it is not included in the AAD.

Figures 3 to 5 show the coverage and error
distributions for the saturation pressure, latent
heat of vaporization, and saturation specific
heat data for the fluids included in this fit-
ting exercise. These figures give a high-level
overview of the representation of the experi-
mental data by the Peng-Robinson equation of
state augmented by the Twu attractive function
parameters obtained in this work. In each fig-
ure, a two-dimensional density plot is shown,
and histograms show for the distributions in
each of the two plotted variables, here the num-

ber of data points and the AAD in the repre-
sentation of the given variable.

The average of the AAD of a property Y for
all the fluids that have this property is defined
by

AADY = mean(
−−−−→
AADY ) (20)

results in the following values:

• AADpσ = 4.9%

• AADcσ = 0.9%

• AADL = 1.5%

The AAD of the properties can vary over a
few orders of magnitude. Therefore, the more
relevant metric is the logarithm of the AAD.
The log-average of the AAD of a property Y
for all the fluids that have this property,

logAADY = exp(mean(log(
−−−−→
AADY ))), (21)

results in the following values for the properties
under consideration:

• logAADpσ = 2.05%

• logAADcσ = 0.39%

• logAADL = 0.34%

These values correspond to the peaks of each of
the histograms in AAD in Figures 3 to 5.
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Figure 3: Distribution of the AAD error of sat-
uration pressure from fitting Twu parameters
and data point availability. The darker the hex,
the more data points fall within it.
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Figure 4: Distribution of the AAD error from
fitting Twu parameters of latent heat of vapor-
ization and data point availability. The darker
the hex, the more data points fall within it.
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Figure 5: Distribution of the AAD error from
fitting Twu parameters of saturation specific
heat cσ and data point availability. The darker
the hex, the more data points fall within it.

An important check on the behavior of the
fitted parameters is an assessment of the shape
of the α function, as described in section 4.2
and in Le Guennec et al.8,28 Therefore, the α
functions were plotted for 50 illustrative fluids,
selected by their sorted value of α at Tr = 0.2.
Figure 6 shows the results for high values of Tr,
and Fig. 7 for low values of Tr, demonstrating
by visual inspection that the curves all 1) pass
through (Tr, α) = (1, 1), 2) yield α values above
zero, and 3) have negative slopes and positive
second derivatives. Therefore, each of these α
functions satisfy the conditions of consistency
laid out by Le Guennec et al.;8,28 this is as ex-
pected because the consistency constraints were
imposed in the fitting procedure.

9



2 4 6 8 10
Tr = T/Tc (-)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

α
 (-

)

Figure 6: Plots of α as a function of Tr at high
Tr for 50 illustrative fluids
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Figure 7: Plots of α as a function of Tr at low
Tr for 50 illustrative fluids

The Waring number43 (also known as Riedel’s
factor) is a property derivative that can be used
to check that the shape of the vapor pressure
curve is reasonable. For that reason, it can be
instructive to plot the Waring number, given by

Wa = −R
(
∂(ln p)

∂(1/T )

)
σ

=
RT 2

p

(
∂p

∂T

)
σ

, (22)

as a function of reduced temperature Tr. While
there are no hard-and-fast rules for the re-
quired shape of the curve of the Waring num-
ber, Waring43 suggests that this number should
have a minimum value at a Tr value of ap-
proximately 0.8 or 0.85, have positive sec-
ond derivatives everywhere, and negative first

derivatives for Tr less than the Wa minimum
and positive first derivative for Tr greater than
the Wa minimum. The Waring number is
finite at the critical point (see for instance
Wagner44). The Waring number is shown in
Fig. 8 for the same fluids studied by War-
ing:43 methane, ethane, propane, n-butane, n-
pentane, n-heptane, ethylene, propylene, 1,3
butadiene, benzene, chlorodifluoromethane (re-
frigerant 13), methanol, carbon dioxide, car-
bon disulfide, sulfur dioxide, and ethylene ox-
ide. The Waring numbers for all these fluids,
when modeled with the α function from this
work, demonstrate the qualitatively correct be-
havior.
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W
a/

m
in

(W
a)

 

Figure 8: Plot of Waring numbers divided by
its value at the minimum as a function of Tr for
the fluids selected by Waring43

Another conclusion from this fitting exercise,
as also noticed by Le Guennec et al. 8 , is that
the Peng-Robinson + Twu formulation is not
always adequate for representing strongly in-
teracting fluids (e.g., acids). As a particu-
larly striking demonstration of the challenges
inherent in representing the phase equilibria of
strongly associating fluids, we present in Fig. 9
the data representation for both vapor pres-
sure and latent heat for acetic acid. The AAD
for the vapor pressure, when only the vapor
pressure data are included in the fit, is 1.1%,
whereas when the latent heat data and satura-
tion specific heat data are included, the AAD
in vapor pressure is more than 19%! For more
weakly associating fluids, the challenges of rep-
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resentation of the experimental data are much
less severe. Even water, a strongly interacting
fluid, has a vapor pressure AAD of 1.2% and a
latent heat AAD of 1.0%. Thus, while we have
endeavored to yield as accurate a representation
of the phase equilibria that we can, users should
be aware of the limitations of these parameters
in representing the properties of strongly asso-
ciating fluids; a healthy dose of caution is ap-
propriate.
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Figure 9: Deviations of the property predictions
for acetic acid with the Twu coefficients as fit
in this work

Conclusions

In this work we have developed a database of
consistent α parameters for the Peng-Robinson
equation of state. These parameters yield ac-
curate representations of the thermodynamic
properties of nearly 2600 fluids. A number of
quantitative and qualitative assessments of the

α function have been carried out, demonstrat-
ing that the α functions yield consistent, accu-
rate, and reasonable behavior of the equation
of state. This database of Twu α function pa-
rameters therefore forms the basis for the next
generation of Peng-Robinson implementations.
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